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1. INTRODUCTION 

Coherent backscattering (CBS) of resonant laser
light – an interferential enhancement of the average in-
tensity of light reflected off a dilute, disordered medi-
um in the backscattering direction – has recently been
observed with cold, trapped atomic clouds [1, 2]. It was
immediately recognized that such an experimentally
very well controlled quantum system as an atomic me-
dium bears a great potential for studying localization
and transport phenomena in mesoscopic systems,
which was hitherto possible only with classical parti-
cles scattering photons, or with disordered solids scat-
tering electrons [3]. Since then, CBS of light by cold at-
oms has become an area of intense theoretical and ex-
perimental research (for a recent review, see [4]). 

The underlying physical reason for the emergence
of CBS is constructive interference between the coun-
terpropagating (labelled “direct'' and "reversed'') multi-
ple scattering amplitudes. When a scattering medium
consists of individual atoms, several mechanisms af-
fecting phase coherence between the interfering waves
should be considered. These are (i) Raman scattering
on degenerate atomic transitions; (ii) inelastic scatter-
ing; (iii) mechanical motion of atoms. 

As regards the atomic degeneracy mediating Raman
processes accompanied by photon polarization flips, its
dephasing role is nowadays very well understood, with
quantitative accordance between theory [5–7] and ex-
periment [2, 8], for ensembles of Rb atoms. 

The next dephasing mechanism, the inelastic photon
scattering induced by atomic saturation 

 

s

 

, has been
studied in less detail. Recent experiment with cold Sr
atoms [9] demonstrated a rapid decrease of CBS en-
hancement factor 

 

α

 

 versus saturation at moderate 

 

s

 

 

 

≤

 

 1.
It was shown, within a scattering theory approach ap-
plied to two atoms in the regime of weakly nonlinear
scattering [10], that a decrease of CBS enhancement
factor occurs due to the partial distinguishability of the

interfering amplitudes. In the general case of many at-
oms, three different amplitudes interfere constructively
in the weakly nonlinear regime, so that 

 

α

 

 may exceed
the linear barrier 2 [11]. 

In this contribution, we will also be concerned with
the impact of saturation on CBS, though for arbitrary
laser field intensities. But prior to proceed with a pre-
sentation of this work, let us make a brief note on the
effect of thermal motion of atoms at temperatures on
the order 100 

 

µ

 

K typical for CBS experiments. 

Mechanical motion spoils phase coherence between
the direct and reversed amplitudes [12], if spread 

 

v

 

 of
the atomic velocities violates the resonance condition

 

k

 

v

 

 

 

�

 

 2

 

γ

 

 [13], where 

 

k

 

 is the wave number and 2

 

γ

 

 is the
natural linewidth of the excited atomic state. In the re-
gime of weak laser intensities, the inequality is usually
satisfied, and the picture of motionless atoms works
very well so long as the CBS intensity is concerned [5].
However, already in the elastic scattering regime, the
photon recoil and Doppler effects do modify the CBS
spectrum [14]. It is even more so in the inelastic scat-
tering regime, when the atoms from the cloud are rap-
idly accelerated out of resonance by a powerful laser
field. Nonetheless, we will ignore this acceleration, and
assume that the atoms are fixed in space. Thus, we fo-
cus here on the laser field coupling exclusively to the
atomic internal degrees of freedom, in order to high-
light the fundamental interference effect under the in-
fluence of nonlinear scattering. Explanation of this in-
fluence for atoms at rest is basic to its understanding for
atoms in motion. 

More specifically, we will study spectrum of CBS
by two atoms in the helicity preserving channel, for ar-
bitrary intensities of the laser field. This topic is above
all motivated by our previous work [15, 16], where we
established existense of the residual CBS contrast in the
deep saturation regime, due to the constructive self-in-
terference of inelastically scattered photons. However,

 

ä‚‡ÌÚÓ‚‡fl ˝ÎÂÍÚÓ‰ËÌ‡ÏËÍ‡
ÔÓˆÂÒÒÓ‚ ‚Á‡ËÏÓ‰ÂÈÒÚ‚Ëfl

 

SPECTRUM OF COHERENT BACKSCATTERING 
OF LIGHT BY TWO ATOMS 

 

© 2007 „.   

 

V. N. Shatokhin

 

B.I. Stepanov Institute of Physics, National Academy of Sciences, 220072 Minsk, Belarus
e-mail: v.shatokhin dragon.bas-net.by

 

Received October 12, 2006

 

Abstract

 

—We study theoretically inelastic spectrum of coherent backscattering of laser light by two atoms
was theoretically studied. For an intense laser field, there are frequency domains of either constructive or de-
structive self-interference of inelastically scattered photons. The emergent spectral features by considering co-
herent backscattering was interpreted as a pump-probe experiment.

 

PACS: 

 

42.50.Ct, 42.25.Dd, 32.80.-t, 42.25.Hz

 

ìÑä 535.14



 

282

 

éèíàäÄ à ëèÖäíêéëäéèàü      ÚÓÏ 103      ‹ 2      2007

 

SHATOKHIN

 

this constructive interference is a net effect of all inelas-
tic photons. The question that naturally arises, of what
the character of interference is at a given frequency, can
only be answered after looking at the CBS spectrum. In
this work we find CBS spectrum and answer this ques-
tion for the particular case of exact resonance. We dem-
onstrate that, in the deep saturation regime, there are
frequency domains in the CBS spectrum exhibiting ei-
ther constructive or destructive interference, and em-
ploy the dressed states representation to identify the
scattering processes that are responsible for the emer-
gent spectral features. Our results agree with those de-
rived within the Langevin equation approach [17]. 

The paper is organized as follows: We start with a
brief presentation of our model and the master equation
approach that we are using. In Sect. 3 we present results
for the stationary CBS intensity and enhancement fac-
tor, and thereafter for CBS spectrum. In the last Sec-
tion, we conclude our work. 

2. MASTER EQUATION APPROACH TO CBS 
OF LIGHT BY TWO ATOMS 

 

A. Model and the Main Quantity of Interest 

 

Details of our approach are given in Ref. [16]. Here,
we will only present its brief outline. We consider a
model quantum system consisting of 2 identical mo-
tionless atoms located at positions 

 

r

 

1

 

 and 

 

r

 

2

 

, with the
distance 

 

r

 

12

 

 = 

 

|

 

r

 

1

 

 – 

 

r

 

2

 

|

 

 being much greater than the op-
tical wavelength. The atoms are embedded in the elec-
tromagnetic bath of quantized harmonic oscillators and
subjected to an external laser field of arbitrary intensity
(see Fig. 1a). Coupling to the bath gives rise to the
spontaneous emission from the excited state and to the
far-field dipole-dipole interaction responsible for ex-

change of photons, whereas coupling to the laser field
gives rise to the Rabi oscillations of populations and co-
herences in the laser-driven transitions of both atoms.
Although the approach can, of course, be formulated
for atoms with arbitrary internal structure, we choose
the ground states of the atoms to be nondegenerate,
while the excited state 3-fold degenerate (see Fig. 1b).
An important parameter describing the effect of a laser
field on atoms is the so-called saturation parameter

 

s 

 

= 

 

Ω

 

2

 

/2(

 

γ

 

2

 

 + 

 

δ

 

2

 

), where 

 

Ω

 

 is the Rabi frequency, and 

 

δ

 

= 

 

ω

 

L

 

 – 

 

ω

 

0

 

 is the detuning of the laser field with respect
to atomic resonance. As already mentioned, we will be
interested in how spectrum of CBS depends on 

 

s

 

 (or 

 

Ω

 

). 

Raman processes which can strongly affect CBS do
not take place on the 

 

J

 

g

 

 = 0  

 

J

 

e

 

 = 1 transition under
consideration. Furthermore, incoherent single scatter-
ing contribution can be filtered out, by looking at CBS,
e.g., in the helicity preserving (

 

h

 

 

 

|| 

 

h

 

) polarization chan-
nel. Precisely this channel was probed in a recent ex-
periment with cold Sr atoms [9]. We consider the par-
ticular case of the laser light with the right circular po-
larization, that is, 

 

e

 

L

 

 = , in the helicity basis
notation. Hence, CBS with preserved helicity corre-
sponds to the flipped polarization 

 

e

 

 =  as shown on
Fig. 1. 

Spectrum of CBS to be addressed in this paper is de-
rived from the average value of the first-order field
temporal correlation function [18]:

 

(1)

 

where 

 

ρ

 

 is the initial density operator of the atom-field
system, 

 

E

 

(–/+)

 

(

 

r

 

, 

 

t

 

) is the negative/positive frequency
component of the electric field operator of the scattered
field, and 

 

〈

 

…

 

〉

 

conf

 

 denotes configuration averaging. The
components of the scattered field are the retarded fields
radiated by the atomic dipoles,

 

(2)

 

where 

 

�

 

0

 

 is the permittivity of the vacuum, 

 

D

 

α

 

 =

=  +  – , with  

 

≡ |

 

k

 

〉

 

α

 

〈

 

l

 

|

 

α

 

, is the
dipole lowering operator, and 

 

t

 

α

 

 = 

 

t

 

 – 

 

|

 

r 

 

– 

 

r

 

α

 

|

 

/

 

c

 

. In writ-
ing Eq. (2), we have assumed that 

 

r

 

12

 

 

 

�

 

 

 

r

 

, that is, the
field is detected in the radiation zone at the distance
much larger than the interatomic distance. In the fol-
lowing, we will for brevity omit the 

 

r

 

-dependent pref-
actor of Eq. (2) and, consistently, of the temporal cor-
relation functions. 

ê+1

ê–1

G
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Fig. 1. Model of CBS with two atoms. (a) atoms (black
dots) are driven by laser light with right circular polariza-
tion, while CBS is observed in the helicity preserving chan-
nel, that is, with flipped polarization. Photons in this chan-
nel appear as a result of double scattering. g is the strength
of the far-field dipole-dipole coupling responsible for ex-
change of photons; (b) internal atomic structure corre-
sponding to a Jg = 0  Je = 1 dipole transition. ω0 is the
transition frequency, 2γ is the radiative linewidth, Ω is the
Rabi frequency. Sublevels |1〉 and |3〉 have magnetic quantum
number m = 0. Sublevels |2〉 and |4〉 correspond to m = –1 and
m = 1, respectively. Thick solid arrow shows laser field
driving |1〉  |4〉 transition, while dashed arrow shows
CBS field originating from |1〉  |2〉 transition.
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Inserting Eq. (2) into Eq. (1) we obtain, in the steady
state limit 

 

t

 

  

 

∞

 

,

 

(3)

 

where “ss” stands for 

 

steady state

 

, 

 

τ

 

 = 

 

t

 

' – 

 

t

 

 

 

≥

 

 0, the in-
ner angular brackets indicate quantum mechanical ex-
pectation value [see Eq. (1)], and 

 

r

 

αβ

 

 

 

≡

 

 

 

r

 

α

 

 – 

 

r

 

β

 

. 
Spectrum can be obtained via Laplace transform of

(3) [19]:

 

(4)

 

where (

 

z

 

) = exp(–

 

z

 

τ

 

) (

 

τ

 

), 

 

z

 

 = 

 

Γ 

 

– 

 

i

 

ν 

 

with

 

Γ

 

 

 

≥

 

 0 and 

 

ν 

 

= 

 

ω 

 

– 

 

ω

 

L

 

. Note that the spectrum is defined
with respect to the laser frequency which means that the
atomic correlation functions must be evaluated in the
frame rotating at  ω  L  . 

Let us conclude this subsection with a remark on the
configuration averaging procedure. This procedure is
necessary because the two-atom correlation functions
may sensitively depend on the interatomic distance and
orientation of the vector 

 

r

 

12

 

 with respect to 

 

k

 

L

 

, exhibit-
ing rapid oscillations around the backscattering direc-
tion. These oscillations have the same nature as a
speckle pattern scattered off a disordered medium. Af-
ter many realizations of the disorder, all peaks except
the one, corresponding to CBS, disappear. A simple
and sufficient way to mimic disorder in a two-atom sys-
tem is to assume an isotropic distribution of the radius-
vector connecting the atoms and a uniform distribution
of interatomic distances around the average distance 

 

l

 

equal to the scattering mean free path. 

 

B. Master Equation 

 

To find the atomic correlation functions appearing
in the right hand side of Eq. (3) we have adapted [15,
16] a theoretical approach initiated by Lehmberg in
1970 [20]. Within this approach, dynamics of the di-
pole operators' expectation values as well as dipole-di-
pole correlators is governed by the master equation

 

(5)

 

where the Liouvillians 

 

�

 

α

 

 and 

 

�

 

αβ

 

 generate the time
evolution of an arbitrary atomic operator 

 

Q

 

, for inde-
pendent and interacting atoms, respectively. Explicitly,

(6)

Gss
1( ) τ( ) σ21

α σ12
β τ( )〈 〉 sse

ikrαβ〈 〉 conf,
α β, 1=

2

∑=

S ν( ) 1
π
--- Re G̃ss

1( )
z( ){ }

Γ 0→
lim ,=

G̃ss
1( ) τd

0

∞∫ Gss
1( )

Q̇〈 〉 �αQ〈 〉
α 1=

2

∑ �αβQ〈 〉 ,
α β≠ 1=

2

∑+=

�αQ –iδ Dα
† Dα Q,[ ] –=

–
i
2
--- Ωα Dα

† εL( ) Ωα* DαεL*( )+ Q,[ ] +

+ γ Dα
†

Q Dα,[ ] Dα
†

Q,[ ]Dα+( ),

(7)

where Ωα =  is the position-dependent Rabi fre-
quency. The radiative dipole-dipole interaction due to
exchange of photons between the atoms is described by

the tensor (g, ) = γg , with  =  –  being the
projector on the transverse plane defined by the unit
vector  along the connecting line between the atoms
α and β. This interaction has a certain strength depend-
ing on the distance between the atoms, via

(8)

with k0 = ω0/c, and on the life time of the excited atomic
levels, through γ. The coupling constant |g | � 1 is small
in the far-field (k0rαβ � 1), where near-field interaction
terms of order (k0rαβ)–2 and (k0rαβ)–3 can be neglected. 

Of course, an arbitrary operator Q inserted into
Eq. (5) does not result in a closed differential equation.
Our system consisting of two four-level atoms leads to
255 = 42 × 42 – 1 linear coupled equations of motion for
the one-time averages. We solve them perturbatively
up to g2, to account for the lowest order (double-)scat-
tering process giving rise to a nontrivial interferential
contribution. To help the reader keeping this in mind
we will supply symbols denoting double scattering in-
tensities and spectra with the subscript “2". 

Note that Eq. (5) describes evolution of the expecta-
tion values (one-time correlation functions), whereas

(τ) is the two-time correlation function. By virtue
of the quantum regression theorem [19], the latter sat-
isfy Eq. (5) also, but their initial conditions are extract-
ed from the stationary solution of (5). In particular, the

double scattering counterpart of (0) is nothing but
the stationary average backscattered light intensity

which will be referred to as . There is an obvious re-

lation between  and S2(ν):

(9)

The expression for  can be obtained independently
from (9). We will use this independent derivation as an
implicit verification of our results for CBS spectra. 

The total CBS intensity at the backscattering direc-
tion can be decomposed in the sum of two terms

(10)

where  ≡ (θ = 0) (i.e., k = –kL), and

�αβQ Dα
† T g n̂,( ) Q Dβ,[ ] +=

+ Dβ
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(11)

(12)

are the so called crossed and ladder terms, respectiver-
ly. Using these terms, we can derive a standard measure
of phase coherence between the counterpropagating
amplitudes in CBS – the enhancement factor

(13)

which for perfect two-wave interference is equal to 2.
Generally, the total backscattered light intensity has

the elastic and inelastic counterparts,

(14)

The elastic counterpart is given by the product of the
expectation values of the atomic dipoles,

(15)

wherefrom for α = β we obtain the elastic ladder term

 and for α ≠ β the elastic crossed term . Given

 and  we can find the fluctuating part of the di-

pole correlation functions defining .

3. RESULTS

We will restrict our consideration to the case of ex-
act resonance, δ = 0. An important advantage of this
choice is that all results can be deduced analytically.

C2
tot θ( ) 2 Re σ21

1 σ12
2〈 〉 ss
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e
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tot σ22
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Numerical results for δ ≠ 0 will be presented in a sepa-
rate contribution.

A. CBS Intensity and Enhancement Factor

The interferential contribution and the incoherent
sum, Eqs. (11) and (12), yield results [16]

(16)

(17)

R1(s), R2(s), and P(s) are polynomial expressions in the
on-resonance saturation parameter s = Ω2/2γ2,

(18a)

(18b)

(18c)

and  = .

The configuration average of (16) and (17) leads to
the final result

(19)

(20)

with  = . The scattering angle θ = |k +

+ kL |/2kL} � 1 with respect to the backscattering direc-
tion was assumed to be sufficiently small herein.

The inhancement factor α(s), Eq. (13), deduced
from Eqs. (19) and (20) reads

(21)

and α(0) = 2.0 in the weak field limit, as expected. The
dependence of α on the saturation parameter is shown
on Fig. 2. For small s, enhancement linearly decreases
as 2 – s/4, in full agreement with the diagrammatic the-
oretical result [10] and in qualitative agreement with
the result of Sr experiment [9]. When s increases fur-
ther, α monotonically drops to an asymptotic value

 = α∞ = 23/21 [16] which is strictly larger than

unity, implying a nonvanishing residual CBS contrast
in the limit of large injected intensities. We will next
show that this residual enhancement is due to inelastic
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Fig. 2. Enhancement factor in the h || h channel versus sat-
uration s. Decrease of α at small s is described by the linear
function 2 – s/4 in accordance with [10]. Inset describes α
in the deep saturation regime. Enhancement tends to the
limit α∞ = 23/21 [16] indicating constructive self-interfer-
ence of inelastic photons. 
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photons only. Indeed, we obtained the following result
for the elastic ladder and crossed terms

(22)

As seen from Eq. (22) the elastic component shows per-
fect contrast for all s. In particular, it is this component

L2
el

C2
el 2 g̃

2

15
----------- s

1 s+( )4
------------------.= =

that results in enhancement α = 2 for very small s  0.
However, in the deep saturation regime, this compo-
nent decreases as s–3, while the counterparts of the total
intensity, Eqs. (19), (20), as s–1. Herefrom follows our
conclusion about the origin of the residual enhance-
ment in the deep saturation regime. Explicitly, the in-
elastic crossed and ladder terms obtained by elementa-
ry substraction of Eq. (22) from Eqs. (19) and (20) read

(23)
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It is easy to verify that  = 2/21 = α∞ – 1.

B. CBS Spectrum

Double scattering spectrum of CBS has the elastic
and inelastic components. The elastic spectrum at the
backscattering direction reads

C2
inel

/L2
inel

s ∞→
lim (25)

where δ(ν) is the Dirac’s delta-function, and  =  + ,
with the ladder and crossed contributions defined in
Eq. (22).

Inelastic spectra of the normalized ladder and
crossed terms, for increasing values of Rabi frequen-
cies, are shown on Fig. 3. Normalization is chosen such

Ĩ2
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Fig. 3. Normalized inelastic spectra of the ladder (solid line) and crossed (dashed line) terms at exact resonance for different values
of the Rabi frequency: (a) Ω = 0.1γ, (b) Ω = γ, (c) Ω = 10γ, (d) Ω = 100γ. 



286

éèíàäÄ à ëèÖäíêéëäéèàü      ÚÓÏ 103      ‹ 2      2007

SHATOKHIN

that integrals of (ν)/  and (ν)/  over ν

yield unity and / , respectively. In the deep sat-
uration regime, the value of the latter integral tends to
the asymptotic value of the interference contrast of
CBS, α∞ – 1.

In describing the CBS spectrum, it is natural to use
two parameters Ω and γ defining positions and lin-
widths of spectral peaks rather than a single saturation
parameter s. We will utilize s only to check consistency
of our expressions for spectra with the results for the in-
elastic intensity and the enhancement factor.

As seen from Fig. 3, inelastic spectra are symmetric
with respect to the laser frequency, for all Ω. For a
small value of the Rabi frequency Ω = 0.1γ (Fig. 3a),
spectra of both the ladder and crossed contributions
have single peaks at ν = 0. Interferential contribution

(ν) is constructive, though (ν) ≤ (ν) indi-
cating that interference is not perfect in this weakly in-
elastic regime. We can derive analytical expressions for
the curves of Fig. 3a by leaving the leading order con-
tribution to inelastic scattering ~(Ω/γ)4, corresponding
to two-photon processes, and neglecting the higher-or-
der terms.

The ladder and crossed terms yield the compact ex-
pressions (henceforth, we will omit the common pref-

actor /15):

(26)

It is easy to establish that the expressions in Eq. (26) are
consistent with the behavior of the enhancement factor
in the two-photon scattering regime. Integrating

(ν), (ν) over all frequencies, we obtain the fol-
lowing inelastic ladder and crossed terms for small Ω: 

(27)

Combining Eq. (27) with the small-s expression for

the elastic ladder and crossed terms  =  = s, and
rewriting Eq. (27) in terms of s, we recover the expect-
ed linear decrease
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As the Rabi frequency Ω increases further on (see
Fig. 3b, 3c, 3d), qualitative differences emerge (on
Fig. 3c, 3d) in the behavior of the ladder and crossed
terms. First, the spectra split into several distinct peaks.
Second, the crossed term becomes negative for a range
of frequencies beyond the central peak. This is a mani-
festation of destructive self-interference of inelastically
scattered photons. Note that a similar effect of antien-
hancement was reported [21] for linear double scatter-
ing from atoms with Zeeman shifted hyperfine ground
levels. New spectral features are robust and become
well-separated in the asymptotic limit of intense driv-
ing [for an example at Ω = 100γ, see Fig. 3d]. In order
to quantify the asymptotic CBS spectra, we will ad-
dress the approximate analytic expression for it, de-
rived in the leading order ~(γ/Ω)2.

In this case, explicit expressions for CBS spectra
can be represented by using a function of two real vari-
ables x1 and x2:

(29)

Let us mention the properties of �(x1, x2) that are im-
portant to us: (i) if x1 = Const, then function (29) repre-
sents a Lorenzian with width x1 and resonance at x2 = 0;
(ii) if x2 = Const, then (29) describes a resonance of a
dispersive type at x1 = 0.

With the help of the function (29), the ladder and
crossed spectra are given by

(30)
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where the two terms of order (γ/Ω)3 are retained be-

cause they define dispersive resonances of (ν) at
ν = ±Ω/2. As seen from Eqs. (30) and (31) as well as
from Fig. 3d, both the ladder and crossed terms have 7
resonances. All resonances of the ladder term are
Lorenzians with positive weights. Two resonances of
the crossed term at ν = ±Ω/2 have dispersive line shape.
Furthermore, among the rest five resonances which all
are of the Lorenzian type, two at ν = ±Ω have negative
weights. Thus, not all inelastic photons interfere with
themselves constructively, yet the overall effect of all
inelastic processes on interference is positive. Note also
that in the frequency domains wh4ere interference is
positive, it is also perfect, as can be concluded from the
equality between the respective weights in the ladder
and crossed contributions.

By performing the elementary integrations of Eqs.
(30) and (31) we arrive at the inelastic ladder and
crossed terms

(32)

which are consistent with Eqs. (23), (24) and, hence,
with α = α∞ = 23/21.

Let us now address the interpretation of the CBS
spectrum in the limit of intense driving.
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C. Interpretation

One can understand the structure of the CBS spec-
trum from the analysis of CBS as a specific realization
of the pump-probe experiment. In the usual setting of
such an experiment [22], an atomic transition is simul-
taneously subjected to two monochromatic fields: a
variable-intensity, fixed-frequency driving, or pump,
field, and a weak probe field with tunable frequency.
For different frequencies of the probe field it can be ab-
sorbed or amplified depending on the intensity of the
pump field. This occurs because the pump field leads to
the energy levels’ shifts and broadenings, while the
weak field transmission spectrum probes these new res-
onances; hence the name of this technique.

In our case of CBS with two atoms, an intense pump
acts in the |1〉  |4〉 transitions of both atoms, causing
an AC Stark shift of the energy levels. In this case it is
instructive to treat the laser mode as a quantum system
strongly coupled to the laser-driven atomic transition
[23]. The eigenstates of the laser-atom interaction
Hamiltonian for δ = 0 are the dressed states

(33)

where N and N + 1 refer to the number of photons in the
laser mode, and α numbers the atoms. Spontaneous
transitions from the dressed states manifold {|±(N)〉α}
to {|±(N – 1)〉α} lead to emission of the fluorescence
spectrum with frequencies ωL – Ω, ωL, and ωL + Ω
known as the Mollow triplet [24]. The Mollow triplet
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Fig. 4. Scattering processes (a–l) and radiative transitions (m–p), depicted by solid wavy arrows, contributing to CBS spectra in the
regime of intense driving. Horisontal lines indicate dressed states. In processes (a–l), a photon with either of the frequencies emitted
by one atom (ωL – Ω (a–d); ωL (e–h); ωL + Ω (i–l)) undergoes the Rayleigh or Raman scattering on the dressed states |±(N – 1)〉.
Diagrams (m–n) show radiative cascade in which CBS resonances at ωL ± Ω/2 appear. Level |2, N〉 can be populated as a result of
a multiphoton scattering process with the participation of one doubly scattered photon (depicted by dashed wavy arrows).
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emitted by one atom plays a role of the probe for anoth-
er atom. Whether this probe field is absorbed or ampli-
fied and what the contribution of interference is can be
observed in the CBS spectrum.

Figure 4 illustrates the processes that contribute to
the CBS spectrum in h || h channel. Left part Fig. 4a–4l
shows possible one-photon elastic Rayleigh and inelas-
tic Raman processes which photons of frequencies ωL –
Ω (a–d), ωL (e–h), and ωL + Ω (i–l) undergo on the
dressed states |±(N – 1)〉. One observes that there are 4
processes in which CBS photons with frequency ωL are
created; 6 processes giving rise to frequencies ωL ± Ω;
2 processes giving rise to ωL ± 2Ω. The latter processes
represent true self-interference of inelastic photons at
ωL – 2Ω and ωL + 2Ω leading to perfect enhancement
(see Eqs. (30) and (31)). Right part of Fig. 4m–4n
shows radiative cascade in the dressed state basis lead-
ing to resonances in the CBS spectrum at ωL ± Ω/2.
These lines appear as a result of spontaneous transition
from the state |2, N – 1〉 (note that the atomic state |2〉 is
not affected by the laser field) to states |±(N – 2)〉. 

Thus, in all the processes except (b) and (l), several
transitions participate in the creation of a CBS photon.
Phases between the participating transitions can be op-
posite due to difference, e.g., in initial, intermediate, or
final atomic states, leading to negative signs of the in-
terferential contributions around ωL ± Ω and ωL ± Ω/2.
All in all, in the ‘pump-probe’ terminology, we observe
that the probe field is amplified at all frequencies. A
fuller analysis of CBS as a pump-probe experiment will
be given in a future work.

4. CONCLUSION

Using the master equation approach we have analyt-
ically calculated a spectrum of CBS by two identical,
motionless atoms for the case of exact resonance be-
tween the laser and atomic transition frequencies. In
particular, we have analysed the previously established
[15, 16] effect of constructive self-interference of in-
elastically scattered photons.

Looking at the expressions for spectra [see Eqs. (30)
and (31)], and at α∞ = 23/21 expressing the overall ef-
fect of all inelastic processes, we come to the following
conclusion. Enhancement factor based on the total
backscattered light intensity is a poor measure of phase
coherence between the counterpropagating waves in
the saturation regime, because it conceals information
on the character of interference at a given frequency. At
intense driving, one should rather use spectrally re-
solved measurements with a filter whose passband Γf
satisfies γ � Γf � Ω. Then, tuning the filter on individ-
ual peaks of the CBS spectra, one would observe either
perfect enhancement (at ω = ωL; ωL ± 2Ω), or antien-
hacement (at ω = ωL ± Ω), else no net interference at all
(at ω = ωL ± Ω/2). 

We interpreted resonances of the asymptotic CBS
spectra from regarding it as a pump-probe experiment.
Although we relegated the detailed explanation of the
character of interference between different processes,
in which probe photons are scattered on the dressed
states, to a separate work, the following remark is in or-
der. For the exact resonance, some of the processes in-
terfere constructively while some destructively, with
the net effect being constructive. But it is possible to
vary populations of the dressed states and, consequent-
ly, the weights of different processes by changing the
laser detuning. Nothing forbids the overall effect of in-
elastic photons to be destructive. In fact, we showed in
the previous work [16] that for large detuning it is in-
deed so. We also established in the same paper that the
ladder term of double scatterin becomes negative in h ⊥
h channel in the saturation regime. This result can be in-
terpreted as a mere absorption of the probe field.
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